OF AND C. A. TEN SELDAM

p-level ($N = 2, l = 1$)		
E mic units	r ₀ atomic units	from section
-0.1250		3a
-0.1193	10.235	36
0.1097	8.540	36
-0.0895	7.089	36
-0.0800	6.701	35
-0.0740	6.497	36
-0.0566	6.000	3a
-0.0408	5.696	36
-0.0312	5.528	3a
-0.0200	5.355	3a
0	5.086	30
0.0312	4.770	3d
0.0556	4.554	3d
0.1250	4.110	3 <i>d</i>
0.5000	2.698	3d
0.8261	2.528	3d
2.524	1.68	3j
3.116	1.55	31
3.943	1.41	31
00	0	3e

the points r = 0 and $r = \infty$. For several ad 1 zero points have been calculated and dication § 3a) and represented in the fisplitting up of the second level into 2s It is obvious that by using only integer n the curves is left between n = l + 1en $r_0 = \infty$ and a comparatively small arge radii r_0 this gap could be filled by the ves only approximative values.

gap in the curve it is necessary to find tent hypergeometric function with real interpolated from tables ⁶) ⁷) with the colation procedures (v. tables II-IV and

; case of $n \to \infty$ has been studied by elker²), especially for the ls level. The function (6) for $n \to \infty$ is proportional

$$J_{2l+1}(2\sqrt{2n}) = J_{2l+1}(2\sqrt{2r}).$$
 (24)

ON THE ENERGIES OF A MODEL OF THE COMPRESSED H-ATOM 677

The first and second node of J_1 give the values for the 1s and 2s level. The first zero point of J_3 gives the intersection of the 2p level with the r_0 -axis. (v. tables II-IV and figures).

Fig. 3. The (E, r_0) -curves for the 1s, 2s and 2p-levels. Asymptotes are the dotted lines and $r_0 = 0$, E = -0.5 (for the 1s surve) and E = -0.125 (for the 2s and 2b curves).

So m m er f e l d and W el k er stressed the importance of a more general investigation of the behaviour of confluent hypergeometric functions F in the neighbourhood of $n = \infty$ or E = 0. For that purpose function F of equation (6) must be expanded as a power-series in n^{-1} . By the definition of F (7) and with (6) and (2) the wave function can be written:

$$F(l+1-n, 2l+2, 2rn^{-1}) = \sum_{k=0}^{\infty} \frac{(-1)^k (2r)^k (2l+1)!}{k! (2l+k+1)!} \prod_{\nu=1}^k \{1-(l+\nu)n^{-1}\}.$$
 (25)

The product can be written as the sum $\sum_{\nu=0}^{k} (-1)^{\nu} a_{\nu}^{k,l} n^{-\nu}$ where $a_{\nu}^{k,l}$ is the sum of the $\binom{k}{\nu}$ products of ν different numbers of the series

$$l + 1, l + 2, \dots, l + k$$
 (without repetitions). The first three *) are
 $a_{0}^{k,l} = 1.$ (26)

$$a_1^{k,l} = \frac{1}{2}k(k+2l+1), \tag{27}$$

$$a_2^{k,l} = k(k-1) \left\{ \frac{1}{2}l^2 + \frac{1}{2}(k+1) l + \frac{1}{24}(k+1) (3k+2) \right\}.$$
(28)

*) The Newton relations *) that can eventually be used to calculate these coefficients are of course also valid here.